Processing math: 100%
We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Gang Xu, Guo-Zhao Wang, Xiao-Diao Chen. Free-Form Deformation with Rational DMS-Spline Volumes[J]. Journal of Computer Science and Technology, 2008, 23(5): 862-873.
Citation: Gang Xu, Guo-Zhao Wang, Xiao-Diao Chen. Free-Form Deformation with Rational DMS-Spline Volumes[J]. Journal of Computer Science and Technology, 2008, 23(5): 862-873.

Free-Form Deformation with Rational DMS-Spline Volumes

More Information
  • Received Date: November 14, 2007
  • Revised Date: May 05, 2008
  • Published Date: September 09, 2008
  • In this paper, we propose a novel free-form deformation (FFD) technique,RDMS-FFD (Rational DMS-FFD), based on rational DMS-spline volumes.RDMS-FFD inherits some good properties of rational DMS-spline volumesand combines more deformation techniques than previous FFD methodsin a consistent framework, such as local deformation, controllattice of arbitrary topology, smooth deformation, multiresolutiondeformation and direct manipulation of deformation. We firstintroduce the rational DMS-spline volume by directly generalizingthe previous results related to DMS-splines. How to generate atetrahedral domain that approximates the shape of the object to bedeformed is also introduced in this paper. Unlike the traditionalFFD techniques, we manipulate the vertices of the tetrahedral domainto achieve deformation results. Our system demonstrates thatRDMS-FFD is powerful and intuitive in geometric modeling.
  • [1] Dahmen W, Micchelli C A, Seidel H P. Blossoming begets B-spline built better by B-patches. {\it Mathematics of Computation}, 1992, 59(199): 97--115.
    [2]
    } Yan H, Hu S, Martin R. 3D morphing using strain field interpolation. {\it Journal of Computer Science and Technology}, 2007, 22(1): 147--155.
    [3]
    } Liu X, Bao H, Peng Q. Digital differential geometry processing. {\it Journal of Computer Science and Technology}, 2006, 21(5): 847--860.
    [4]
    } Sederberg T, Parry S. Free-form deformation of solid geometric models. In {\it Proc. ACM SIGGRAPH 1986}, Dallas, USA, 1986, pp.151--160.
    [5]
    } Bechmann D, Gain J. Point, curve, surface, volume-based spatial deformation. Technique Report, 2005, http://dpt-info.u-strasbg.fr/bechmann/Deformation1.pdf.
    [6]
    } Qin H, Terzopoulos D. Triangular NURBS and their dynamic generalizations. {\it Computer Aided Geometric Design}, 1997, 14(4): 325--347.
    [7]
    } Hua J, He Y, Qin H. Multiresolution heterogeneous solid modeling and visualization using trivariate simplex splines. In {\it Proc. ACM Symp. Solid Modeling and Application}, Nice, France, 2004, pp.47--58.
    [8]
    } Feng J, Shao J, Jin X, Peng Q, Forrest A R. Multiresolution free-form deformation with subdivision surface of arbitrary topology. {\it The Visual Computer}, 2006, 22(1): 28--42.
    [9]
    } Griessmair J, Purgathofer W. Deformation of solids with trivariate B-splines. In {\it Proc. Eurographics 1989}, Hamburg, Germany, 1989, pp.137--148.
    [10]
    } Kalra P, Mangli A, Thalmann N M, Thalmann D. Simulation of facial muscle actions based on rational freeform deformation. {\it Computer Graphic Forum}, 1992, 11(3): 59--69.
    [11]
    } Lamousin H, Waggenspack W. NURBS-based freeform deformation. {\it IEEE Computer Graphics and Application}, 1994, 14(9): 59--65.
    [12]
    } Raviv A, Elber G. Three dimensional freeform sculpting via zero sets of scalar trivariate functions. In {\it Proc. ACM Symp. Solid Modeling and Application}, Michigan, USA, 1999, pp.246--257.
    [13]
    } Kagan P, Fischer A. Integrated mechanically based CAE system using B-Spline finite elements. {\it Computer Aided Design}, 2000, 32(8): 539--552.
    [14] }Coquillart S. Extended free-form deformation: A sculpturing tool for 3D geometric modeling. In {\it Proc. ACM SIGGRAPH 1990}, Dallas, USA, 1990, pp.187--193.
    [15]
    } Coquillart S, Jancene P. Animated free-form deformations: An interactive animation technique. In {\it Proc. ACM SIGGRAPH 1991}, Las Vegas, USA, 1991, pp.23--26.
    [16]
    } MacCracken R, Joy K. Free-form deformation with lattice of arbitrary topology. In {\it Proc. ACM SIGGRAPH 1996}, New Orleans, USA, 1996, pp.181--188.
    [17]
    } Bechmann D, Bertrand Y, Thery S. Continuous free form deformation. {\it Comput. Netw. ISDN Syst.}, 1996, 29(14): 1715--1725.
    [18]
    } Moccozet L, Thalmann N M. Dirichlet free-form deformations and their application to hand simulation. In {\it Proc. Computer Animation}, Seoul, Korea, 1997, pp.93--102.
    [19]
    } Song W, Yang X. Free-form deformation with weighted T-spline. {\it The Visual Computer}, 2005, 21(3): 139--151.
    [20]
    } Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular meshes. In {\it Proc. ACM SIGGRAPH 2005}, Los Angeles, USA, 2005, pp.561--566.
    [21]
    } Yoon S H, Kim M S. Sweep-based freeform deformation. {\it Computer Graphics Forum}, 2006, 25(3): 487--496.
    [22]
    } Feng J, Ma L, Peng Q. A new free-form deformation through the control of parametric surfaces. {\it Computer and Graphics}, 1996, 20(4): 531--539.
    [23]
    } Feng J, Peng Q. Accurate B-spline free-form deformation of polygonal objects. {\it Journal of Graphics Tools}, 1998, 3(3): 11--27.
    [24]
    } Kazuya G, Kobayashi, Katsutoshi O. t-FFD: Freeform deformation by using triangular mesh. In {\it Proc. ACM Symp. Solid Modeling and Application}, Washington, USA, 2003, pp.226--234.
    [25]
    } Hua J, Qin H. Free form deformations via sketching and manipulating the scalar fields. In {\it Proc. ACM Symp. Solid Modeling and Application}, Washington, USA, 2003, pp.328--333.
    [26]
    } Lazarus F, Coquillart S, Jancene P. Axial deformations: An intuitive deformation technique. {\it Computer Aided Design}, 1994, 26(8): 608--612.
    [27]
    } Chang Y, Rockwood P. A generalized de Casteljau approach to 3D free-form deformation. In {\it Proc. ACM SIGGRAPH 1994}, Orlando, USA, 1994, pp.257--260.
    [28]
    } Singh K, Fiume E. Wires: A geometric deformation technique. In {\it Proc. ACM SIGGRAPH 1998}, Orlando, USA, 1998, pp.405--414.
    [29]
    } Hsu W, Hughes J, Kaufman H. Direct manipulation on free-form deformation. In {\it Proc. ACM SIGGRAPH 1992}, Chicago, USA, 1992, pp.177--184.
    [30]
    } Shimin Hu, Hui Zhang, Tai C, Jiaguang Sun. Direct manipulation of FFD: Efficient explicit solutions and decompo\-sable multiple point constraints. {\it The Visual Computer}, 2001, 17(6): 370--379.
    [31]
    } Chang T, Lee J H, Kim M S, Hong S J. Direct manipulation of generalized cylinders based on rational motion. {\it The Visual Computer}, 1998, 15(5): 228--239.
    [32]
    } Aubert F, Bechmann D. Volume preserving space deformation. {\it Computer and Graphics}, 1997, 20(5): 625--639.
    [33]
    } Wang C, Kai Tang. Developability-preserved free-form deformation of assembled patches. In {\it Proc. ACM Symp. Solid Modeling and Application}, Nice, France, 2004, pp.231--236.
    [34]
    } Fong P, Seidel H P. An implementation of triangular B-spline surfaces over arbitrary triangulations. {\it Computer Aided Geometric Design}, 1993, 10(3/4): 267--275.
    [35]
    } Greiner G, Seidel H P. Modeling with triangular B-splines. {\it IEEE Computer Graphics and Applications}, 1994, 14(2): 56--60.
    [36]
    } Pfeifle R, Seidel H P. Faster evaluation of qudartic bivariate DMS spline surfaces. In {\it Proc. Graphics Interface 1994}, Alberta, Canada, 1994, pp.182--189.
    [37]
    } Franssen M, Veltkamp R C, Wesselink W. Efficient evaluation of triangular B-spline surfaces. {\it Computer Aided Geometric Design}, 2000, 17(9): 863--877.
    [38]
    } He Y, Qin H. Surface reconstruction with triangular B-splines. In {\it Proc. Geometric Modeling and Processing 2004}, Beijing, China, 2004, pp.279--291.
    [39]
    } He Y, Gu X, Qin H. Rational spherical splines for genus zero shape modeling. In {\it Proc. Shape Modeling and Applications 2005}, Cambridge, MA, USA, 2005, pp.82--91.
    [40]
    } He Y, Gu X, Qin H. Automatic shape control of triangular B-splines of arbitrary topology. {\it Journal of Computer Science and Technology}, 2006, 21(2): 232--237.
    [41]
    } Gu X, He Y, Qin H. Manifold splines. In {\it Proc. ACM Symp. Solid and Physical Modeling (SPM 05)}, Cambridge, Massachusetts, USA, 2005, pp.27--38.
    [42]
    } Sander P V, Gu X, Gortler S J, Hoppe H, Snyder J. Silhouette clipping. In {\it Proc. ACM SIGGRAPH 2000}, New Orleans, USA, 2000, pp.327--334.
    [43]
    } Zhou K, Huang J, Snyder J, Liu X, Bao H, Guo B, Shum H Y. Large mesh deformation using the volumetric graph Laplacian. {\it ACM Transactions on Graphics}, 2005, 24(3): 496--503.
    [44]
    } Huang J, Shi X, Liu X, Zhou K, Wei L, Teng S, Bao H, Guo B, Shum H Y. Subspace gradient domain mesh deformation. {\it ACM Transactions on Graphics}, 2006, 25(3): 1126--1134.
    [45]
    } Jorge N, Stephen J W. Numerical Optimization. Berlin, Heidelberg, New York: Springer, 1999.
    [46]
    } Schaefer S, Hakenberg J, Warren J. Smooth subdivision of tetrahedral meshes. In {\it Proc. Eurographics Symp. Geometry Processing (SGP 04)}, Nice, France, 2004, pp.151--158.
  • Related Articles

    [1]Xu-Zhou Zhang, Yun-Zhan Gong, Ya-Wen Wang, Ying Xing, Ming-Zhe Zhang. Automated String Constraints Solving for Programs Containing String Manipulation Functions[J]. Journal of Computer Science and Technology, 2017, 32(6): 1125-1135. DOI: 10.1007/s11390-017-1787-y
    [2]Jing Li, Lei Liu, Yuan Wu, Xiang-Hua Liu, Yi Gao, Xiao-Bing Feng, Cheng-Yong Wu. Pragma Directed Shared Memory Centric Optimizations on GPUs[J]. Journal of Computer Science and Technology, 2016, 31(2): 235-252. DOI: 10.1007/s11390-016-1624-8
    [3]Alejandro Catal&aacute, Fernando Garcia-Sanjuan, Javier Jaen, Jose A. Mocholi. TangiWheel: A Widget for Manipulating Collections on Tabletop Displays Supporting Hybrid Input Modality[J]. Journal of Computer Science and Technology, 2012, 27(4): 811-829. DOI: 10.1007/s11390-012-1266-4
    [4]Wai-Ho Mak, Yingcai Wu, Ming-Yuen Chan, Huamin Qu. Visibility-Aware Direct Volume Rendering[J]. Journal of Computer Science and Technology, 2011, 26(2): 217-228. DOI: 10.1007/s11390-011-1124-9
    [5]Fu-Li Wu, Chun-Hui Mei, Jiao-Ying Shi. Method of Direct Texture Synthesis on Arbitrary Surfaces[J]. Journal of Computer Science and Technology, 2004, 19(5).
    [6]WAN Huagen, JIN Xiaogang, BAO Hujun. Direct 3D Painting with a Metaball-Based Paint brush[J]. Journal of Computer Science and Technology, 2000, 15(1): 100-104.
    [7]Zhang Yin, Xu Zhuoqun. Concurrent Manipulation of Expanded AVL Trees[J]. Journal of Computer Science and Technology, 1998, 13(4): 325-336.
    [8]Cai Wenli, Shi Jiaoying. Composed Scattering Model for Direct Volume Rendering[J]. Journal of Computer Science and Technology, 1996, 11(5): 433-442.
    [9]LIN Hua, LU Mi, Jesse Z.FANG. A Direct Approach for Finding Loop Transformation Matrices[J]. Journal of Computer Science and Technology, 1996, 11(3): 237-256.
    [10]Dong Shihai, Zhong Weide. BD-UIMS:How It Supports Semantic Feedback and Direct Manipulation[J]. Journal of Computer Science and Technology, 1992, 7(3): 237-242.

Catalog

    Article views (32) PDF downloads (1991) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return